3.2.60 \(\int \frac {1}{\sqrt [3]{1+x^2} (9+x^2)} \, dx\) [160]

3.2.60.1 Optimal result
3.2.60.2 Mathematica [C] (warning: unable to verify)
3.2.60.3 Rubi [A] (verified)
3.2.60.4 Maple [C] (verified)
3.2.60.5 Fricas [C] (verification not implemented)
3.2.60.6 Sympy [F]
3.2.60.7 Maxima [F]
3.2.60.8 Giac [F]
3.2.60.9 Mupad [F(-1)]

3.2.60.1 Optimal result

Integrand size = 17, antiderivative size = 70 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\frac {1}{12} \arctan \left (\frac {x}{3}\right )+\frac {1}{12} \arctan \left (\frac {\left (1-\sqrt [3]{1+x^2}\right )^2}{3 x}\right )-\frac {\text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{1+x^2}\right )}{x}\right )}{4 \sqrt {3}} \]

output
1/12*arctan(1/3*x)+1/12*arctan(1/3*(1-(x^2+1)^(1/3))^2/x)-1/12*arctanh((1- 
(x^2+1)^(1/3))*3^(1/2)/x)*3^(1/2)
 
3.2.60.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 4.12 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.77 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=-\frac {27 x \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},-x^2,-\frac {x^2}{9}\right )}{\sqrt [3]{1+x^2} \left (9+x^2\right ) \left (-27 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},-x^2,-\frac {x^2}{9}\right )+2 x^2 \left (\operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},2,\frac {5}{2},-x^2,-\frac {x^2}{9}\right )+3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {4}{3},1,\frac {5}{2},-x^2,-\frac {x^2}{9}\right )\right )\right )} \]

input
Integrate[1/((1 + x^2)^(1/3)*(9 + x^2)),x]
 
output
(-27*x*AppellF1[1/2, 1/3, 1, 3/2, -x^2, -1/9*x^2])/((1 + x^2)^(1/3)*(9 + x 
^2)*(-27*AppellF1[1/2, 1/3, 1, 3/2, -x^2, -1/9*x^2] + 2*x^2*(AppellF1[3/2, 
 1/3, 2, 5/2, -x^2, -1/9*x^2] + 3*AppellF1[3/2, 4/3, 1, 5/2, -x^2, -1/9*x^ 
2])))
 
3.2.60.3 Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {306}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [3]{x^2+1} \left (x^2+9\right )} \, dx\)

\(\Big \downarrow \) 306

\(\displaystyle \frac {1}{12} \arctan \left (\frac {\left (1-\sqrt [3]{x^2+1}\right )^2}{3 x}\right )+\frac {1}{12} \arctan \left (\frac {x}{3}\right )-\frac {\text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{x^2+1}\right )}{x}\right )}{4 \sqrt {3}}\)

input
Int[1/((1 + x^2)^(1/3)*(9 + x^2)),x]
 
output
ArcTan[x/3]/12 + ArcTan[(1 - (1 + x^2)^(1/3))^2/(3*x)]/12 - ArcTanh[(Sqrt[ 
3]*(1 - (1 + x^2)^(1/3)))/x]/(4*Sqrt[3])
 

3.2.60.3.1 Defintions of rubi rules used

rule 306
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[b/a, 2]}, Simp[q*(ArcTan[q*(x/3)]/(12*Rt[a, 3]*d)), x] + (Simp[q* 
(ArcTan[(Rt[a, 3] - (a + b*x^2)^(1/3))^2/(3*Rt[a, 3]^2*q*x)]/(12*Rt[a, 3]*d 
)), x] - Simp[q*(ArcTanh[(Sqrt[3]*(Rt[a, 3] - (a + b*x^2)^(1/3)))/(Rt[a, 3] 
*q*x)]/(4*Sqrt[3]*Rt[a, 3]*d)), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && EqQ[b*c - 9*a*d, 0] && PosQ[b/a]
 
3.2.60.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 6.47 (sec) , antiderivative size = 623, normalized size of antiderivative = 8.90

method result size
trager \(144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \ln \left (-\frac {497664 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x -995328 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x -6912 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x +20736 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x +144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}-864 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}-432 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}-96 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) x +6 \left (x^{2}+1\right )^{\frac {2}{3}}-x^{2}+3}{x^{2}+9}\right )-\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {497664 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x -995328 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x -6912 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x +20736 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x +144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}-864 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}-432 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}-96 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) x +6 \left (x^{2}+1\right )^{\frac {2}{3}}-x^{2}+3}{x^{2}+9}\right )+\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {82944 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x -165888 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x -1728 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x +2304 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x -24 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}+144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}+8 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \left (x^{2}+1\right )^{\frac {1}{3}} x +72 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}+\left (x^{2}+1\right )^{\frac {2}{3}}-\left (x^{2}+1\right )^{\frac {1}{3}}}{x^{2}+9}\right )\) \(623\)

input
int(1/(x^2+1)^(1/3)/(x^2+9),x,method=_RETURNVERBOSE)
 
output
144*RootOf(20736*_Z^4-144*_Z^2+1)^3*ln(-(497664*RootOf(20736*_Z^4-144*_Z^2 
+1)^5*(x^2+1)^(1/3)*x-995328*RootOf(20736*_Z^4-144*_Z^2+1)^5*x-6912*RootOf 
(20736*_Z^4-144*_Z^2+1)^3*(x^2+1)^(1/3)*x+20736*RootOf(20736*_Z^4-144*_Z^2 
+1)^3*x+144*RootOf(20736*_Z^4-144*_Z^2+1)^2*x^2-864*RootOf(20736*_Z^4-144* 
_Z^2+1)^2*(x^2+1)^(1/3)-432*RootOf(20736*_Z^4-144*_Z^2+1)^2-96*RootOf(2073 
6*_Z^4-144*_Z^2+1)*x+6*(x^2+1)^(2/3)-x^2+3)/(x^2+9))-RootOf(20736*_Z^4-144 
*_Z^2+1)*ln(-(497664*RootOf(20736*_Z^4-144*_Z^2+1)^5*(x^2+1)^(1/3)*x-99532 
8*RootOf(20736*_Z^4-144*_Z^2+1)^5*x-6912*RootOf(20736*_Z^4-144*_Z^2+1)^3*( 
x^2+1)^(1/3)*x+20736*RootOf(20736*_Z^4-144*_Z^2+1)^3*x+144*RootOf(20736*_Z 
^4-144*_Z^2+1)^2*x^2-864*RootOf(20736*_Z^4-144*_Z^2+1)^2*(x^2+1)^(1/3)-432 
*RootOf(20736*_Z^4-144*_Z^2+1)^2-96*RootOf(20736*_Z^4-144*_Z^2+1)*x+6*(x^2 
+1)^(2/3)-x^2+3)/(x^2+9))+RootOf(20736*_Z^4-144*_Z^2+1)*ln(-(82944*RootOf( 
20736*_Z^4-144*_Z^2+1)^5*(x^2+1)^(1/3)*x-165888*RootOf(20736*_Z^4-144*_Z^2 
+1)^5*x-1728*RootOf(20736*_Z^4-144*_Z^2+1)^3*(x^2+1)^(1/3)*x+2304*RootOf(2 
0736*_Z^4-144*_Z^2+1)^3*x-24*RootOf(20736*_Z^4-144*_Z^2+1)^2*x^2+144*RootO 
f(20736*_Z^4-144*_Z^2+1)^2*(x^2+1)^(1/3)+8*RootOf(20736*_Z^4-144*_Z^2+1)*( 
x^2+1)^(1/3)*x+72*RootOf(20736*_Z^4-144*_Z^2+1)^2+(x^2+1)^(2/3)-(x^2+1)^(1 
/3))/(x^2+9))
 
3.2.60.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.17 (sec) , antiderivative size = 1059, normalized size of antiderivative = 15.13 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="fricas")
 
output
-1/144*sqrt(2)*sqrt(-I*sqrt(3) + 1)*log(-(42*x^5 - 828*x^3 + sqrt(2)*(x^6 
- 315*x^4 + 567*x^2 + 243)*sqrt(-I*sqrt(3) + 1) + 9*(40*x^3 + (sqrt(3)*sqr 
t(2)*(-I*x^4 + 36*I*x^2 - 27*I) + sqrt(2)*(x^4 - 36*x^2 + 27))*sqrt(-I*sqr 
t(3) + 1) - 216*x)*(x^2 + 1)^(2/3) + 6*sqrt(3)*(7*I*x^5 - 138*I*x^3 - 81*I 
*x) - 3*(2*x^5 - 156*x^3 - 2*sqrt(3)*(I*x^5 - 78*I*x^3 + 81*I*x) - 3*(sqrt 
(3)*sqrt(2)*(-5*I*x^4 + 54*I*x^2 + 27*I) - sqrt(2)*(5*x^4 - 54*x^2 - 27))* 
sqrt(-I*sqrt(3) + 1) + 162*x)*(x^2 + 1)^(1/3) - 486*x)/(x^6 + 27*x^4 + 243 
*x^2 + 729)) + 1/144*sqrt(2)*sqrt(-I*sqrt(3) + 1)*log(-(42*x^5 - 828*x^3 - 
 sqrt(2)*(x^6 - 315*x^4 + 567*x^2 + 243)*sqrt(-I*sqrt(3) + 1) + 9*(40*x^3 
+ (sqrt(3)*sqrt(2)*(I*x^4 - 36*I*x^2 + 27*I) - sqrt(2)*(x^4 - 36*x^2 + 27) 
)*sqrt(-I*sqrt(3) + 1) - 216*x)*(x^2 + 1)^(2/3) + 6*sqrt(3)*(7*I*x^5 - 138 
*I*x^3 - 81*I*x) - 3*(2*x^5 - 156*x^3 - 2*sqrt(3)*(I*x^5 - 78*I*x^3 + 81*I 
*x) - 3*(sqrt(3)*sqrt(2)*(5*I*x^4 - 54*I*x^2 - 27*I) + sqrt(2)*(5*x^4 - 54 
*x^2 - 27))*sqrt(-I*sqrt(3) + 1) + 162*x)*(x^2 + 1)^(1/3) - 486*x)/(x^6 + 
27*x^4 + 243*x^2 + 729)) - 1/144*sqrt(2)*sqrt(I*sqrt(3) + 1)*log(-(42*x^5 
- 828*x^3 + 72*(5*x^3 - 27*x)*(x^2 + 1)^(2/3) + 6*sqrt(3)*(-7*I*x^5 + 138* 
I*x^3 + 81*I*x) + (9*(sqrt(3)*sqrt(2)*(I*x^4 - 36*I*x^2 + 27*I) + sqrt(2)* 
(x^4 - 36*x^2 + 27))*(x^2 + 1)^(2/3) + sqrt(2)*(x^6 - 315*x^4 + 567*x^2 + 
243) + 9*(sqrt(3)*sqrt(2)*(5*I*x^4 - 54*I*x^2 - 27*I) - sqrt(2)*(5*x^4 - 5 
4*x^2 - 27))*(x^2 + 1)^(1/3))*sqrt(I*sqrt(3) + 1) - 6*(x^5 - 78*x^3 - s...
 
3.2.60.6 Sympy [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int \frac {1}{\sqrt [3]{x^{2} + 1} \left (x^{2} + 9\right )}\, dx \]

input
integrate(1/(x**2+1)**(1/3)/(x**2+9),x)
 
output
Integral(1/((x**2 + 1)**(1/3)*(x**2 + 9)), x)
 
3.2.60.7 Maxima [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int { \frac {1}{{\left (x^{2} + 9\right )} {\left (x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="maxima")
 
output
integrate(1/((x^2 + 9)*(x^2 + 1)^(1/3)), x)
 
3.2.60.8 Giac [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int { \frac {1}{{\left (x^{2} + 9\right )} {\left (x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="giac")
 
output
integrate(1/((x^2 + 9)*(x^2 + 1)^(1/3)), x)
 
3.2.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int \frac {1}{{\left (x^2+1\right )}^{1/3}\,\left (x^2+9\right )} \,d x \]

input
int(1/((x^2 + 1)^(1/3)*(x^2 + 9)),x)
 
output
int(1/((x^2 + 1)^(1/3)*(x^2 + 9)), x)